Aller au contenu
PALEO-ART – Quand les pierres nous parlent –

PALEO-ART – Quand les pierres nous parlent –

VALLEES DU RIBEROT, D’ORLE & MONT VALIER

  • Accueil
  • Podcasts
  • Actualités
  • Vues 3D
  • Cupules
  • Pétroglyphes
  • Sépultures
  • Habitats
  • Facebook
  • Sitemap
Home > Encyclopédie > Fer

Fer

3 Â B C D E F G H I J K L M N O P Q R S T U V W Y Z
Fa Fe Fi Fo Fu
Fel Fer Feu
3 novembre 2021
Par Claude MOUNE

Fer

Fer

Cet article concerne l’élément chimique, le corps simple et les composés correspondants. Pour les autres significations, voir Fer (homonymie).

Manganèse ← Fer → Cobalt
—
  Structure cristalline cubique centrée
26 Fe
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
↑
Fe
↓
Ru
Tableau complet • Tableau étendu
Position dans le tableau périodique
Symbole Fe
Nom Fer
Numéro atomique 26
Groupe 8
Période 4e période
Bloc Bloc d
Famille d’éléments Métal de transition
Configuration électronique [Ar] 4s2 3d6
Électrons par niveau d’énergie 2, 8, 14, 2
Propriétés atomiques de l’élément
Masse atomique 55,845 ± 0,002 u1
Rayon atomique(calc) 140 pm (156 pm)
Rayon de covalence 132 ± 3 pm
(bas spin)2
152 ± 6 pm
(
haut spin)2
État d’oxydation +2, +3, +4, +6
Électronégativité(Pauling) 1,83
Oxyde Amphotère
Énergies d’ionisation3
1re : 7,9024 eV 2e : 16,1877 eV
3e : 30,652 eV 4e : 54,8 eV
5e : 75,0 eV 6e : 99,1 eV
7e : 124,98 eV 8e : 151,06 eV
9e : 233,6 eV 10e : 262,1 eV
11e : 290,2 eV 12e : 330,8 eV
13e : 361,0 eV 14e : 392,2 eV
15e : 457 eV 16e : 489,256 eV
17e : 1 266 eV 18e : 1 358 eV
19e : 1 456 eV 20e : 1 582 eV
21e : 1 689 eV 22e : 1 799 eV
23e : 1 950 eV 24e : 2 023 eV
25e : 8 828 eV 26e : 9 277,69 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
54Fe 5,845 % stable avec 28 neutrons
55Fe {syn.} 2,73 a ε 0,231 55Mn
56Fe 91,72 % stable avec 30 neutrons
57Fe 2,2 % stable avec 31 neutrons
58Fe 0,28 % stable avec 32 neutrons
59Fe {syn.} 44,503 j β– 0,231 59Co
60Fe {syn.} 1,5×106 a β– 3,978 60Co
Propriétés physiques du corps simple
État ordinaire Solide ferromagnétique
Allotrope à l’état standard Fer α (cubique centré)
Autres allotropes Fer γ (cubique à faces centrées), fer δ (cubique centré)
Masse volumique 7,874 g·cm-31 à (20 °C)
Système cristallin Cubique centré
Dureté 4
Couleur Blanc argenté ; reflets gris
Point de fusion 1 538 °C1
Point d’ébullition 2 861 °C1
Énergie de fusion 13,8 kJ·mol-1
Énergie de vaporisation 349,6 kJ·mol-1
Volume molaire 7,09×10−6 m3·mol-1
Pression de vapeur 7,05 Pa
Vitesse du son 4 910 m·s-1 à 20 °C
Chaleur massique 440 J·kg-1·K-1
Conductivité électrique 9,93×106 S·m-1
Conductivité thermique 80,2 W·m-1·K-1
Solubilité sol. dans H2SO4 dilué4, HCl5
Divers
No CAS 7439-89-66
No ECHA 100.028.270
No CE 231-096-4
Précautions
SGH7

Le fer est l’élément chimique de numéro atomique 26, de symbole Fe.

Le corps simple est le métal et le matériau ferromagnétique le plus courant dans la vie quotidienne, le plus souvent sous forme d’alliages divers. Le fer pur est un métal de transition ductile, mais l’adjonction de très faibles quantités d’éléments additionels modifie considérablement ses propriétés mécaniques. Allié au carbone et avec d’autres éléments d’additions il forme les aciers, dont la sensibilité aux traitements thermomécaniques permet de diversifier encore plus les propriétés du matériau.

Généralités

Le fer fait partie du groupe des éléments à l’origine des métaux de transition, il montre des analogies caractéristiques avec le ruthénium, l’osmium, le cobalt et le nickel.

Physico-chimie nucléaire, isotopes, fréquence

Le fer 56 est le nucléide stable le plus lourd issu de la fusion du silicium par réactions α lors de la nucléosynthèse stellaire, qui aboutit en fait au nickel 56, lequel est instable et donne du 56Fe par deux désintégrations β+ successives ; les éléments de numéro atomique plus élevé sont synthétisés par des réactions plus énergétiques intervenant plutôt lors de l’explosion de supernovas.

Propriétés nucléaires

Le noyau de fer 56 possède la masse par nucléon la plus faible de tous les nucléides mais pas l’énergie de liaison la plus élevée, en raison d’une proportion de protons un peu plus élevée que le nickel 62 qui, lui, a l’énergie de liaison la plus élevée par nucléon9.

Le fer 56 résulte de la désintégration naturelle du nickel 56, isotope instable produit au cœur d’étoiles massives par fusion du silicium 28 au cours de réactions alpha en cascade qui s’arrêtent au nickel précisément parce que ce dernier possède l’énergie de liaison nucléaire par nucléon la plus élevée : poursuivre la fusion, pour produire par exemple du zinc 60, consommerait de l’énergie au lieu d’en libérer.

Isotopes

Article détaillé : Isotopes du fer.

Le fer possède 28 isotopes connus, de nombre de masse variant de 45 à 72, ainsi que six isomères nucléaires. Parmi ces isotopes, quatre sont stables, 54Fe, 56Fe, 57Fe et 58Fe, 56Fe étant largement le plus abondant (91,754 %), suivi de 54Fe (5,845 % possiblement légèrement radioactif avec une demi-vie supérieure à 3,1 × 1022 années), 57Fe (2,119 %) et 58Fe (0,282 %). La masse atomique standard du fer est de 55,845(2) u.

Le plus stable des radioisotopes du fer est 60Fe avec une demi-vie de 1,5 million d’années, suivi de 55Fe (2,7 années), 59Fe (un peu moins de 44,5 jours) et de 52Fe (8,5 heures).

Occurrence et abondance naturelle

Le fer est le métal le plus abondant dans les météorites ainsi que dans le noyau des planètes, comme celui de la Terre.

Le fer minéral est présent dans la nature sous forme pure ou plus rarement sous forme d’alliage avec du nickel (5 à 18 %) d’origine météoritique mais aussi sous forme de fer terrestre dit « tellurique ». Trop rare et surtout disséminé, il est fabriqué artificiellement par l’Homme forgeron et sidérurgiste et massivement dans certaines civilisations caucasiennes depuis plus de trois millénaires à partir de ses principaux minerais. Les combinaisons chimiques et minérales impliquant le fer sont pléthoriques, mais les véritables minerais relativement purs à forte teneur en fer sont beaucoup moins communs et souvent très localisés dans des mines de fer la plupart connues de haute antiquité.

Le fer est le 6e élément le plus abondant dans l’Univers, il est formé comme « élément final » de fusion nucléaire, par fusion du silicium dans les étoiles massives. Tandis qu’il compose environ 5 % (en masse) de la croûte terrestre, le noyau terrestre est censé être en grande partie un alliage de fer-nickel, constituant ainsi 35 % de la masse de la Terre dans son ensemble. Le fer est peut-être, en fait, l’élément le plus abondant sur Terre ou du moins comparable (en juste 2e position) en masse à l’oxygène, mais seulement le 4e élément le plus abondant dans la croûte terrestre.

Des courants de convection dans la couche externe du noyau terrestre (noyau externe), de « l’alliage » liquide principalement fer-nickel, sont supposés être à l’origine du champ magnétique terrestre.

Fonctions dans la biosphère

Le fer joue un rôle majeur en tant qu’oligoélément ou micronutriment pour de nombreuses espèces, et comme élément régulant l’amplitude et la dynamique de la productivité primaire océanique, ce qui en fait une composante essentielle des cycles biogéochimiques marins et des puits de carbone marins10.

Les données récentes montrent que le cycle du fer océanique d’abord supposé lié aux apports de poussières riches en fer est en réalité bien plus complexe, et étroitement couplé biogéochimiquement avec des nutriments majeurs (carbonés, azotés)10. On a montré en 2017 que dans les zones pauvres en fer de l’Antarctique, le fer particulaire issu du rabotage des roches par les glaciers est une source alternative de fer que le phytoplancton sait exploiter11. Des études ont montré que certains phytoplanctons semblent effectivement bénéficier d’un taux élevé de CO2, mais pour assimiler ce CO2il leur faut aussi du fer ; il est spéculé depuis la fin du xxe siècle que l’ensemencement de l’océan avec du fer pourrait aider à limiter le changement climatique. Or on découvre que chez la plupart des espèces phytoplanctoniques, ce fer n’est assimilable qu’en présence de carbonates. Problème : ces derniers sont détruits par l’acidification induite par la solubilisation du CO2 dans l’eau12.

Corps simple

Le fer dévoile un polymorphisme métallique. L’allotropie n’en applique pas moins un changement basique du cortège des propriétés physiques (dilatation, résistivité, chaleur spécifique liée à la structure cristallochimique, etc.).

C’est un métal qui, en fonction de la température, présente un évident polymorphisme métallique. L’allotropie distingue :

  • dans les conditions normales de température et de pression, c’est-à-dire aux basses températures ou « à basse température », un solide cristallinde structure cubique centré (fer α, structure appelée ferrite dans l’acier). Le fer α est fortement ferromagnétique : les moments magnétiques des atomes s’alignent sous l’influence d’un champ magnétique extérieur et conservent leur nouvelle orientation après la disparition de ce champ. Sa température de Curie est de 770 °C. Sa capacité calorifique est de 0,5 kJ kg−1 °C−1. À température ambiante, il a une dureté entre 4 et 5 sur l’échelle de Mohs. Sa masse volumique avoisine 7,86 g cm−3 à 20 °C. Le fer alpha est caractérisé par une chaleur de sublimation atomique équivalent à 99,6 kcal/atome-gramme à température ambiante (298 K) ;
  • le fer β bêta est une structure cubique face centrée obtenue au-dessus du point de Curie, vers 770 °C ou 1 042 K. Le ferromagnétisme du fer α disparaît sans réarrangement atomique ;
  • dès les hautes températures à pression ambiante, à partir de 912 °C, le fer α devient un fer cubique à faces centrées (fer γ, structure appelée ou austénite dans l’acier), la transformation implique une variation d’énergie interne d’environ 0,22 kcal/atome-gramme à 1 184 K. Le fer γ est paramagnétique ;
  • au-delà de 1 394 °C ou 1 665 K, il redevient un minéral de maille cubique centré (fer δ) ; cette transformation implique une variation d’énergie interne d’environ 0,27 kcal/atome-gramme ;
  • la transformation en fer ε (structure hexagonale compacte) se produit à température ambiante à 130 kilobars13,14.

Le corps pur fond à 1 538 °C avec une chaleur latente de fusion qui est de l’ordre de 3,7 kcal/atome-gramme. L’ébullition du fer, caractérisée par une chaleur latente d’ébullition de l’ordre de 84,18 kcal/atome-gramme apparaît vers 2 860 °C, en pratique pour un corps simple plus ou moins impur entre 2 750 °C et 3 000 °C.

Propriétés chimiques

Le fer est insoluble dans l’eau et les bases. Il est attaqué par les acides.

Chimie du fer

Le fer présente essentiellement trois degrés d’oxydation :

  • 0 dans le corps simple fer et ses alliages ;
  • +II dans les composés ferreux (ion ferreux Fe2+ dans les composés ioniques) ;
  • +III dans les composés ferriques (ion ferrique Fe3+ dans les composés ioniques).

Oxydation du métal

Le fer, combiné à l’oxygène, s’oxyde, suivant les conditions en trois oxydes de fer :

  • l’oxyde de fer(II) FeO (« oxyde ferreux ») ;
  • l’oxyde de fer(III) Fe2O3 (« oxyde ferrique ») ;
  • l’oxyde de fer(II,III) Fe3O4 (« oxyde magnétique »).

À l’air libre en présence d’humidité, il se corrode en formant de la rouille, constituée d’oxydes et d’oxyhydroxydes ferriques hydratés, qu’on peut écrire Fe2O3·nH2O et FeO(OH)·nH2O respectivement. La rouille étant un matériau poreux, la réaction d’oxydation peut se propager jusqu’au cœur du métal, contrairement, par exemple, à l’aluminium, qui forme une couche fine d’oxyde imperméable.

La spectroscopie Mössbauer fournit un outil puissant pour la distinction des différents degrés d’oxydation du fer. Avec cette technique, il est possible de faire une analyse quantitative en présence de mélange de phases de fer.

Les ions du fer en solution aqueuse

La coloration orangée rougeâtre de cette rivière est due à l’ion ferrique, Fe(III) ou Fe3+, dans les roches.

En solution aqueuse, l’élément chimique fer est présent sous forme ionique avec deux valences principales :

  • Fe2+ (l’ion fer(II), anciennement appelé ferreux). Suivant l’environnement chimique en solution, il peut prendre différentes couleurs. La solution obtenue par dissolution de sel de Mohr, par exemple, présente une couleur vert pâle. Une telle solution est stable pour les pH inférieurs à 6. Pour un pH supérieur à cette valeur, l’hydroxyde de fer(II) Fe(OH)2 précipite ;
  • Fe3+ (l’ion fer(III), anciennement appelé ferrique). Les solutions de chlorure de fer(III) sont orange, et celle de nitrate de fer(III) sont incolores. Ces solutions doivent avoir un pH inférieur à 2 car l’hydroxyde de fer(III) Fe(OH)3 est peu soluble.

Précipitation

Un certain nombre d’ions conduisent à la précipitation des ions du fer en solution. L’ion hydroxydeHO− est de ceux-là (voir ci-dessus). L’ion sulfure S2− permet de former le sulfure de fer(II) FeS, le sulfure de fer(III) et Fe2S3 pour des pH pas trop acides. Il faut en effet qu’une quantité raisonnable d’ions sulfure soit présents, ce qui n’est pas le cas à pH acide puisque l’ion sulfure est alors sous sa forme diacide, le sulfure d’hydrogène H2S.

Oxydoréduction des ions du fer

Les potentiels de référence des couples du fer sont[réf. nécessaire] :

Fe2+ / Fe : E° = −0,44 V
Fe3+ / Fe2+ : E° = +0,77 V

Cela indique que le fer métallique n’est pas stable en milieu aqueux. Il s’oxyde d’autant plus vite que le pH est bas.

Cela indique également qu’en présence de dioxygène dissous (E°(O2 / H2O) = 1,3 V[réf. nécessaire]), les ions fer(II) ne sont pas stables non plus.

Ces potentiels de référence changent en fonction des ions présents en solution, surtout si les constantes de stabilité des complexes correspondant en Fe(II) et Fe(III) sont notablement différentes.

L’oxydoréduction est une manière de titrer les ions fer(II), par exemple par les ions cérium(IV) (couple Ce4+/Ce3+) ou par les ions permanganate MnO4−(couple MnO4− / Mn2+ en milieu acide sulfurique).

Bien que la réduction en fer métallique des ions du fer soit possible, elle est rarement pratiquée à partir de solution aqueuse.

Complexation des ions fer

De nombreux complexes du fer en solution aqueuse se forment facilement, par simple addition du ligand (au bon pH). Parmi les complexes les plus courant se trouvent ceux impliquant les ligands :

  • ion cyanure CN−
pour Fe(II) : Fe(CN)64−, ion hexacyanoferrate(II), diamagnétique, jaune ;
pour Fe(III) : Fe(CN)63−, ion hexacyanoferrate(III), paramagnétique, orange ;

Ces complexes permettent de préparer le bleu de Prusse ;

  • ion fluorure F−
pour Fe(III) : FeF2+, ion fluorofer(III) incolore

En chimie analytique, ce complexe permet de marquer la couleur des ions fer(III) ;

  • 1,10-phénantroline (o-phen en abrégé)
pour Fe(II) : Fe(ophen)32+, rouge, ions triorphophénantrolinefer(II)
pour Fe(III) : Fe(ophen)33+, vert, ions triorphophénantrolinefer(III)

Le couple redox constitué de ces deux complexes est utilisé comme indicateur de titrage d’oxydoréduction ;

  • ions thiocyanate SCN−
pour Fe(III) : Fe(SCN)2+, rouge sang, ion thiocyanatofer(III)

Ce complexe permet de mettre en évidence de petite quantité d’ion fer(III) en solution grâce à sa couleur caractéristique.

Chimie organométallique

Le premier complexe organométallique isolé comme tel, en 1951, fut un complexe du fer : le ferrocène. Il est constitué d’un ions fer(II) avec deux ions cyclopentadiényles C5H5−. De nombreux autres complexes ont été produits depuis, soit dérivés du ferrocène, soit de nature toute différente.

Gisements

Le fer est recyclable, mais son extraction n’est pas dénuée d’impact environnemental et énergétique (Mine de Erzberg, Styrie).

Article détaillé : Minerai de fer.

La majeure partie du fer dans la croûte est combinée avec l’oxygène, formant des minerais d’oxyde de fer, tels que l’hématite (Fe2O3), la magnétite (Fe3O4) et la limonite (Fe2O3·nH2O). L’oxyde magnétique ou magnétite Fe3O4 est connu depuis l’Antiquité grecque. Il tire son nom du mont Magnetos (le grand mont), une montagne grecque particulièrement riche en ce minéral.

Environ une météorite sur vingt comprend de la taénite, unique alliage de minéral de fer-nickel (fer 35-80 %), et de la kamacite (fer 90-95 %). Bien que rares, les météorites de fer sont une source de fer nickelé, ce fer météorique arrivé sur la surface terrestre étant à l’origine de la sidérurgie au sens étymologique ; l’autre source naturelle de fer métal légèrement nickelé sont les gisements de fer tellurique ou fer natif des minéralogistes qui sont plus rares.

La couleur rouge de la surface de Mars est due à un régolithe riche en hématite amorphe ; la planète rouge est en quelque sorte une « planète rouillée ».

90 % des gisements de minerai de fer dans le monde sont retenus dans une couche de faible épaisseur et très riche en Fe(II), la couche de fer rubané. Aux premiers temps de la vie, à l’éon Archéen vers −2 à −4 Ga, les cyanobactéries vivent dans des océans de Fe(II). Lorsqu’elles commencent à faire de la photosynthèse, l’oxygène produit est dissous et réagit avec Fe(II) pour former des oxydes de Fe(III) qui précipitent au fond des océans. Après consommation de Fe(II), l’oxygène se concentre dans les océans puis dans l’atmosphère, il constitue alors un poison pour la proto-vie. Ainsi, les gisements de fer rubané se trouvent systématiquement entre les couches géologiques des massifs cristallins (schistes, gneiss, etc.) et les couches calcaires dolomitiques (coraux) constituant les massifs préalpins.

Histoire de la métallurgie du fer

Article détaillé : Histoire de la production de l’acier.

Le fer était connu dès le chalcolithique à travers les sites de fer telluriques et surtout les météorites de fer au fer souvent déjà allié de grande qualité, et il n’est pas assuré que sa métallurgie soit demeurée confidentielle comme on l’estime souvent jusqu’au xiie siècle av. J.-C., époque qui marque, précisément, le début de « l’Âge du fer » : autour du xve siècle av. J.-C. les Hittites, en Anatolie, avaient développé une assez bonne maîtrise du travail du fer, leur tradition déterminant son origine dans la région du Caucase, et cette technique semble également avoir été connue assez tôt en Inde du nord, notamment dans l’Uttar Pradesh.

Dans le monde hellénistique le fer est l’attribut d’Héphaïstos, dieu grec de la métallurgie et des volcans15. Chez les Romains, toujours forgé par Vulcain, avatar italique de Héphaïstos, il est un attribut princier de Mars. Les alchimistes donnèrent au fer le nom de Mars, dieu de la guerre dans la mythologie romaine.

Jusqu’au milieu du Moyen Âge, l’Europe raffina le fer au moyen de bas fourneaux, qui ne produisent pas de fonte ; la technique du haut fourneau, qui, elle, produit de la fonte brute à partir de charbon de bois et de minerai de fer, a été mise au point en Chine au milieu du ve siècle av. J.-C.. Elle est courante en Europe occidentale dès le milieu du xve siècle.

L’Occident réinvente indépendamment la technique plus d’un millier d’années après la Chine. Selon le doxographe antique Théophraste, c’est Délas, un Phrygien, qui inventa le fer16.

Les infimes changements dans les pièces de métal solide obtenues par le labeur physique du forgeron (martelage, réchauffement, alliages superficiels, etc.) sont très peu importants pour le chimiste. La chimie du fer oublie en grande partie l’appréciation extrêmement fine des forgerons ou des mares de forges au cours de la longue histoire technique du fer.

Écrit par :

Claude MOUNE

Notre action : Inventorier l'art rupestre : cupules et pétroglyphes. Sans oublier les habitats, sépultures et mégalithes, dans le le Castillonnais en général et le Riberot en particulier. Claude MOUNE, Résidant à Saint Girons (Ariège), il est une des trois chevilles ouvrières de cette initiative de recherches et d’études archéo-historiques dans le Haut-Lez. Féru d’archéologie depuis son enfance, sa préférence va à l’archéologie funéraire et à l’archéo-astronomie qu’il pratiqua sur le terrain en Israel, Liban et Côte d’Ivoire. Il prépare un livre sur : « L’influence des formes dans les civilisations ».

Voir tous les articles

Rechercher un mot

Dernières publications

  • Visite du Menhir de Peyre Quillado, Bethmale, Couserans, Ariège
  • Deux visages qui n’en font qu’un
  • L’équipe de Paleo-art.org en action…
  • Le dolmen d’Eylie : un faux air de mégalithe
  • Du creusement des cupules
  • Le complexe du sarrat de Guillaire
  • Constructions en pierres sèches (Cabanats, Courets)
  • Les cupules : tout un monde
  • Balezil l’isard blanc
  • Modélisation 3D par photogrammétrie : le Dolmen d’Ayer

Articles les plus regardés

Les cupules : tout un monde
Modélisation 3D par photogrammétrie : le visage humain de profil qui parle
Modélisation 3D par photogrammétrie : le Dolmen d’Ayer
Les cupules : caprices de la géologie ou de l’homme ?
Du creusement des cupules
Modélisation 3D par photogrammétrie : meule dormante en granite avec une petite cupule
Deux visages qui n’en font qu’un
Modélisation 3D par Lidar : gros bloc de granite à cupules
Modélisation 3D par photogrammétrie : le « monstre zoomorphe polymorphe souriant »
Balezil l’isard blanc

3D

12 Articles

Abri sous roche

2 Articles

Actualités

44 Articles

Anthropomorphes

6 Articles

Archéoastronomie

1 Article

Archéologie

26 Articles

Architecture

7 Articles

Architecture religieuse

1 Article

Ariège

17 Articles

Art

10 Articles

Art expressionniste

3 Articles

Art naturaliste

1 Article

Art pariétal

2 Articles

Art rupestre

5 Articles

Art schématique

4 Articles

Art semi-naturaliste

2 Articles

Art semi-schématique

2 Articles

Art symbolique

4 Articles

Barlonguères

1 Article

Bethmale

1 Article

Biros

12 Articles

Cabanats

1 Article

Cabane

1 Article

Castillonnais

14 Articles

Chalcolithique

12 Articles

Contes & Légendes

1 Article

Couret

1 Article

Cromlech

1 Article

Cupules

12 Articles

Dolmen

3 Articles

Ethnologie

1 Article

Ethymologie

4 Articles

Gallo-romain

1 Article

Géologie

7 Articles

Habitats

1 Article

Histoire

1 Article

Histoire du Haut-Lez

7 Articles

Jaça

1 Article

Lidar

2 Articles

Mégalithe

17 Articles

Modélisation 3D

12 Articles

Mont-Valier

5 Articles

Montagne

3 Articles

Moyen-Âge

2 Articles

Mythologie

2 Articles

Nécropole

3 Articles

Nécropole néolithique

3 Articles

Néolithique

15 Articles

Oronymie

7 Articles

paléo-art

16 Articles

Pastoralisme

4 Articles

Pastoralisme de l’Âge du Bronze et du Fer

2 Articles

Période Gallo-romaine

2 Articles

Pétroglyphe

2 Articles

Photogrammétrie

11 Articles

Pierre sèche (Cabanas, orris, enceintes)

1 Article

Préhistoire

17 Articles

Protohistoire

14 Articles

Randonnées et visites à thème

1 Article

Riberot

19 Articles

Sépulture

4 Articles

Spéléologie

4 Articles

Toponymie

4 Articles

Val d'Aran

6 Articles

Zoomorphes

7 Articles

Menu principal

  • Accueil
  • Podcasts
  • Actualités
  • Vues 3D
  • Cupules
  • Pétroglyphes
  • Sépultures
  • Habitats
  • Facebook
  • Sitemap

Livres de Jérôme RAMOND

Voici notre sélection que nous vous recommandons :

Jérôme RAMOND - Livre - Un pays des Pyrénées Centrales Le Castillonnais

Un pays des Pyrénées Centrales Le Castillonnais - Des éditions Aramond - ISBN 978-2-9534374-0-9

Jérôme RAMOND - Livre - François David Cau-Durban (1844-1908) Sa vie et son oeuvre

François David Cau-Durban (1844-1908) Sa vie et son oeuvre

Archives

  • juin 2022
  • février 2022
  • décembre 2021
  • novembre 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • décembre 2020
  • novembre 2020
  • octobre 2020
  • septembre 2020

Quel temps fait-il sur notre terrain d’études ?

Les Bordes-sur-Lez
◉
8°
Rain
07:4120:19 CEST
Feels like: 8°C
Wind: 3km/h N
Humidity: 97%
Pressure: 1005.76mbar
UV index: 0
11h12h13h14h15h
8°C
9°C
9°C
9°C
9°C
ThuFriSatSunMon
8/-3°C
2/-4°C
3/-6°C
5/-5°C
7/-4°C
Weather forecast Les Bordes-sur-Lez, France ▸

Compteur de visites

Statistiques du site :

  • 114316 visiteurs uniques
  • 1777674 pages vues



Logo  

Inventorier l'art rupestre: cupules, pétroglyphes, mégalithes et habitats

Claude Moune
Saint Girons, Ariège
paleo.art.cupules@gmail.com
+33 6 83 55 46 08



Articles récents

  • Visite du Menhir de Peyre Quillado, Bethmale, Couserans, Ariège
  • Deux visages qui n’en font qu’un
  • L’équipe de Paleo-art.org en action…
  • Le dolmen d’Eylie : un faux air de mégalithe
  • Du creusement des cupules

Articles les plus lus

Modélisation 3D par photogrammétrie : le « monstre zoomorphe polymorphe souriant »
Etymologie du mot et nom Isard et sa racine « IS » (2)
Microtoponymie de la vallée de l’Izard (3)
Oronymie du mot / nom « Izard » (4)
« A la Recherche du diamant violet » sur les hauts d’Uchentein
Une dalle avec des pétroglyphes sur le Pla de Beret
Modélisation 3D par photogrammétrie : un gros galet roulé avec une mystérieuse cupule

Site créé et sponsorisé par : FlyPix et Goldsnoop.com | Auteurs : Claude Moune, Jérôme Ramond & Vivien Laïlle | Nos recherches sont basées uniquement sur la prospection visuelle. Nous ne faisons pas de prospections invasives, la législation nous l’interdisant. | © Copyrights et droits réservés, reproductions interdites : textes, photos, vidéos et modélisations 3D, sauf autorisations écrites. | Site web hébergé chez Gandi.net | Pour toutes demandes, commentaires, ou avis, par email : paleo.art.cupules@gmail.com

RGPD / Règlement Général sur la Protection des Données
Nous utilisons des cookies sur notre site Web pour vous offrir l'expérience la plus pertinente en mémorisant vos préférences. En cliquant sur « Tout accepter », vous consentez à l'utilisation de TOUS les cookies. Cependant, vous pouvez visiter les « Réglages cookies » pour fournir un consentement contrôlé.
Réglages cookiesTout accepterTout refuser
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Toujours activé
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDuréeDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
Enregistrer & appliquer

Contact Us

Aller au contenu principal
Ouvrir la barre d’outils Outils d’accessibilité

Outils d’accessibilité

  • Augmenter le texteAugmenter le texte
  • Diminuer le texteDiminuer le texte
  • Niveau de grisNiveau de gris
  • Haut contrasteHaut contraste
  • Contraste négatifContraste négatif
  • Arrière-plan clairArrière-plan clair
  • Liens soulignésLiens soulignés
  • Police lisiblePolice lisible
  • Réinitialiser Réinitialiser
  • Plan de sitePlan de site
  • Retour d’expérienceRetour d’expérience